Printers are a common example of output devices. New multifunction peripherals that integrate printing, scanning, and copying into a single device are also popular. Computer monitors are sometimes treated as peripherals. High-fidelity sound systems are another example of output devices often classified as computer peripherals. Manufacturers have announced devices that provide tactile feedback to the user—“force feedback” joysticks, for example. This highlights the complexity of classifying peripherals—a joystick with force feedback is truly both an input and an output peripheral.
Early printers often used a process known as impact printing, in which a small number of pins were driven into a desired pattern by an electromagnetic printhead. As each pin was driven forward, it struck an inked ribbon and transferred a single dot the size of the pinhead to the paper. Multiple dots combined into a matrix to form characters and graphics, hence the name dot matrix. Another early print technology, daisy-wheel printers, made impressions of whole characters with a single blow of an electromagnetic printhead, similar to an electric typewriter. Laser printers have replaced such printers in most commercial settings. Laser printers employ a focused beam of light to etch patterns of positively charged particles on the surface of a cylindrical drum made of negatively charged organic, photosensitive material. As the drum rotates, negatively charged toner particles adhere to the patterns etched by the laser and are transferred to the paper. Another, less expensive printing technology developed for the home and small businesses is inkjet printing. The majority of inkjet printers operate by ejecting extremely tiny droplets of ink to form characters in a matrix of dots—much like dot matrix printers.
Computer display devices have been in use almost as long as computers themselves. Early computer displays employed the same cathode-ray tubes (CRTs) used in television and radar systems. The fundamental principle behind CRT displays is the emission of a controlled stream of electrons that strike light-emitting phosphors coating the inside of the screen. The screen itself is divided into multiple scan lines, each of which contains a number of pixels—the rough equivalent of dots in a dot matrix printer. The resolution of a monitor is determined by its pixel size. More recent liquid crystal displays (LCDs) rely on liquid crystal cells that realign incoming polarized light. The realigned beams pass through a filter that permits only those beams with a particular alignment to pass. By controlling the liquid crystal cells with electrical charges, various colours or shades are made to appear on the screen.
- Inkjet printer
Computer display devices have been in use almost as long as computers themselves. Early computer displays employed the same cathode-ray tubes (CRTs) used in television and radar systems. The fundamental principle behind CRT displays is the emission of a controlled stream of electrons that strike light-emitting phosphors coating the inside of the screen. The screen itself is divided into multiple scan lines, each of which contains a number of pixels—the rough equivalent of dots in a dot matrix printer. The resolution of a monitor is determined by its pixel size. More recent liquid crystal displays (LCDs) rely on liquid crystal cells that realign incoming polarized light. The realigned beams pass through a filter that permits only those beams with a particular alignment to pass. By controlling the liquid crystal cells with electrical charges, various colours or shades are made to appear on the screen.
Communication devices

Peripheral interfaces
A variety of techniques have been employed in the design of interfaces to link computers and peripherals. An interface of this nature is often termed a bus. This nomenclature derives from the presence of many paths of electrical communication (e.g., wires) bundled or joined together in a single device. Multiple peripherals can be attached to a single bus—the peripherals need not be homogeneous. An example is the small computer systems interface (SCSI; pronounced “scuzzy”). This popular standard allows heterogeneous devices to communicate with a computer by sharing a single bus. Under the auspices of various national and international organizations, many such standards have been established by manufacturers and users of computers and peripherals.Buses can be loosely classified as serial or parallel. Parallel buses have a relatively large number of wires bundled together that enable data to be transferred in parallel. This increases the throughput, or rate of data transfer, between the peripheral and computer. SCSI buses are parallel buses. Examples of serial buses include the universal serial bus (USB). USB has an interesting feature in that the bus carries not only data to and from the peripheral but also electrical power. Examples of other peripheral integration schemes include integrated drive electronics (IDE) and enhanced integrated drive electronics (EIDE). Predating USB, these two schemes were designed initially to support greater flexibility in adapting hard disk drives to a variety of different computer makers.
No comments:
Post a Comment